A Particle Swarm Optimization Approach for Low Power Very Large Scale Integration Routing

نویسنده

  • S. Rajaram
چکیده

This study deals with the particle swarm optimization approach for optimal power dissipation in VLSI interconnect driven routing technique. Interconnect power dissipation is a major challenging research problem in Deep Submicron (DSM) regime that affects the overall circuit performance. The Buffer Insertion Buffer Sizing and Wire Sizing (BISWS) is considered for minimizing the power dissipation in VLSI circuits using interconnect wires. The shortest path constraints, buffer insert constraints and wire size constraints are used to analysis the power consumption considered for analysis. The closed form expressions for optimal power allocation is also derived. These expressions can be used to estimate the power dissipation efficiently in the physical design stages of the VLSI. It is observed that the power dissipation is optimal using the shortest path between source to sink. A novel optimization algorithm is introduced to model delay and bandwidth analytically derived and analyzed. The proposed optimization algorithm is analyzed and compared for 65, 45 and 32 nm CMOS technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A particle swarm optimization method for periodic vehicle routing problem with pickup and delivery in transportation

In this article, multiple-product PVRP with pickup and delivery that is used widely in goods distribution or other service companies, especially by railways, was introduced. A mathematical formulation was provided for this problem. Each product had a set of vehicles which could carry the product and pickup and delivery could simultaneously occur. To solve the problem, two meta-heuristic methods...

متن کامل

Broadcast Routing in Wireless Ad-Hoc Networks: A Particle Swarm optimization Approach

While routing in multi-hop packet radio networks (static Ad-hoc wireless networks), it is crucial to minimize power consumption since nodes are powered by batteries of limited capacity and it is expensive to recharge the device. This paper studies the problem of broadcast routing in radio networks. Given a network with an identified source node, any broadcast routing is considered as a directed...

متن کامل

Improved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand

Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...

متن کامل

A TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION

In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal ...

متن کامل

An Improved Particle Swarm Optimization for a Class of Capacitated Vehicle Routing Problems

Vehicle Routing Problem (VRP) is addressed to a class of problems for determining a set of vehicle routes, in which each vehicle departs from a given depot, serves a given set of customers, and returns back to the same depot. On the other hand, simultaneous delivery and pickup problems have drawn much attention in the past few years due to its high usage in real world cases. This study, therefo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014